
Diagnosing and Fixing Problems in
Stars2

When an error occurs in the Stars2 system, the development team needs to diagnose the problem and
determine how to correct it or find a way to work around the problem if a fix is not immediately
available. This document will discuss some of the tools used to diagnose and fix problems and some
standard procedures to follow. We will walk through a few specific examples to help illustrate the
process. We will also discuss some known problems that exist in the system which have not yet been
corrected or may not be serious enough to correct compared to other work that needs to be done.

How are problems reported?
Most often, stars2 developers learn about a problem via an email message from a DAPC staff member.
These messages will contain a description of the problem and will often identify the time at which the
problem occurred. The time the problem occurred is a very useful piece of information since it allows
the developer to focus on a narrow range of errors reported in the Stars2 log files.

All problems should also be reported in the Mantis system so they can be properly tracked. This is
especially true for problems that require a software change to be corrected. Sometimes problems are
reported directly to Mantis without an email sent to the development team. These problems are usually
less urgent in nature, but the development team needs to monitor Mantis for new issues as well as
respond to emails about problems.

Tools for Diagnosing Problems

Error Logs
With most problems, the first place to look for more information about the cause of the problem is the
stars2 error log. Stars2 runs on 3 servers to support the internal system and 2 servers to support the
external (eBiz) system with each server maintaining its own log files, so there are 5 different directories
containing error logs. These directories are all located on \\javadev1\logs and are named by server. The
internal servers are appsman4, appsman5, and appsman6 and the external servers are beasrv0 and
beasrv1. The directories for log files are named after the server, so log files for appsman4 are in the
appsman4 directory; log files for appsman5 are in the appsman5 directory, etc. The appsman4 server is
the most active internal server and beasrv0 is the most active external server, so most internal problems
are found by searching the appsman4 directory while most external problems are found by searching
the beasrv0 directory.

The log files are named stars2Prod.log for the internal system and stars2ExternalProd.log for the
external system. Log4j is configured to keep a history of four log files so, in addition to the
stars2Prod.log file, there are files named stars2Prod.log.1, stars2Prod.log.2, stars2Prod.log.3, and

stars2Prod.log.4 which contain older log messages (the same naming convention applies to the external
log files). Each log file can hold up to 10 MB of log messages.

The log files are copied from the production system every five minutes, so you will you need to wait
until the next 5-minute boundary to see an error message that results from an error that just occurred.
This is true for both the internal and external log files.

The log files are formatted with the date and time appearing first in the line followed by the log level
(usually INFO, WARN, or ERROR), information about the thread where the problem occurred, the name
of the java method and the line number of the source code where the message was logged, and a short
description of the problem which may be followed by a stack trace.

If there is a stack trace in the error message, it will identify the exception that was thrown and the line
of code where the problem occurred. Some stack traces are a little complex and need some analysis to
determine the line of code where the error actually occurred. For example, consider the error message
below:

2010-07-12 13:28:53,894 ERROR [[ACTIVE] ExecuteThread: '26' for queue:
'weblogic.kernel.Default (self-tuning)']
us.oh.state.epa.stars2.database.dao.infrastructure.InfrastructureSQLDAO
(AbstractDAO.java:291) - Execute Update Failed!
java.sql.SQLIntegrityConstraintViolationException: ORA-02291: integrity
constraint (STARS2_STAGING.FP_FACILITY_FK3) violated - parent key not found

at
oracle.jdbc.driver.SQLStateMapping.newSQLException(SQLStateMapping.java:85)

at
oracle.jdbc.driver.DatabaseError.newSQLException(DatabaseError.java:112)

at
oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:173)

at oracle.jdbc.driver.T4CTTIoer.processError(T4CTTIoer.java:455)
at oracle.jdbc.driver.T4CTTIoer.processError(T4CTTIoer.java:413)
at oracle.jdbc.driver.T4C8Oall.receive(T4C8Oall.java:1030)
at

oracle.jdbc.driver.T4CPreparedStatement.doOall8(T4CPreparedStatement.java:194
)

at
oracle.jdbc.driver.T4CPreparedStatement.executeForRows(T4CPreparedStatement.j
ava:947)

at
oracle.jdbc.driver.OracleStatement.doExecuteWithTimeout(OracleStatement.java:
1222)

at
oracle.jdbc.driver.OracleStatement.doScrollExecuteCommon(OracleStatement.java
:4206)

at
oracle.jdbc.driver.OraclePreparedStatement.doScrollPstmtExecuteUpdate(OracleP
reparedStatement.java:9472)

at
oracle.jdbc.driver.OraclePreparedStatement.executeInternal(OraclePreparedStat
ement.java:3379)

at
oracle.jdbc.driver.OraclePreparedStatement.executeUpdate(OraclePreparedStatem
ent.java:3462)

at
oracle.jdbc.driver.OraclePreparedStatementWrapper.executeUpdate(OraclePrepare
dStatementWrapper.java:1349)

at
weblogic.jdbc.wrapper.PreparedStatement.executeUpdate(PreparedStatement.java:
159)

at
us.oh.state.epa.stars2.database.dao.AbstractDAO.executeUpdate(AbstractDAO.jav
a:287)

at
us.oh.state.epa.stars2.database.dao.AbstractDAO$ConnectionHandler.update(Abst
ractDAO.java:726)

at
us.oh.state.epa.stars2.database.dao.AbstractDAO$ConnectionHandler.update(Abst
ractDAO.java:699)

at
us.oh.state.epa.stars2.database.dao.infrastructure.InfrastructureSQLDAO.creat
eTask(InfrastructureSQLDAO.java:1918)

at
us.oh.state.epa.stars2.bo.InfrastructureBO.createTask(InfrastructureBO.java:5
556)

at
us.oh.state.epa.stars2.bo.InfrastructureBO.createTask(InfrastructureBO.java:5
407)

at
us.oh.state.epa.stars2.bo.InfrastructureBO.createTask(InfrastructureBO.java:5
341)

at
us.oh.state.epa.stars2.bo.InfrastructureBO.createTask(InfrastructureBO.java:5
364)

at
us.oh.state.epa.stars2.ejb.services.infrastructure.InfrastructureEJB_9jo56o_E
OImpl.createTask(InfrastructureEJB_9jo56o_EOImpl.java:9048)

at
us.oh.state.epa.stars2.bo.EmissionsReportBO.generateNewReport(EmissionsReport
BO.java:5395)

at
us.oh.state.epa.stars2.ejb.services.emissionsReport.EmissionsReportEJB_e2r4u2
_EOImpl.generateNewReport(EmissionsReportEJB_e2r4u2_EOImpl.java:3809)

at
us.oh.state.epa.stars2.webcommon.reports.ReportBaseCommon.callTV_SMTV_create(
ReportBaseCommon.java:339)

at
us.oh.state.epa.stars2.webcommon.reports.ReportProfileBase.startCreateReviseR
eportDoneInternal2(ReportProfileBase.java:2183)

at
us.oh.state.epa.stars2.webcommon.reports.ReportProfileBase.startCreateReviseR
eportDoneInternal1(ReportProfileBase.java:2099)

at
us.oh.state.epa.stars2.webcommon.reports.ReportProfileBase.startReportCopyI(R
eportProfileBase.java:1740)

at
us.oh.state.epa.stars2.portal.emissionsReport.ReportProfile.startReportCopy(R
eportProfile.java:71)

at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.
java:25)

at java.lang.reflect.Method.invoke(Method.java:597)
at

org.apache.myfaces.el.MethodBindingImpl.invoke(MethodBindingImpl.java:132)
at

org.apache.myfaces.application.ActionListenerImpl.processAction(ActionListene
rImpl.java:61)

at
oracle.adf.view.faces.component.UIXCommand.broadcast(UIXCommand.java:211)

at
oracle.adf.view.faces.component.UIXCollection.broadcast(UIXCollection.java:94
)

at
oracle.adf.view.faces.component.UIXTable.broadcast(UIXTable.java:205)

at
oracle.adf.view.faces.component.UIXCollection.broadcast(UIXCollection.java:94
)

at oracle.adf.view.faces.component.UIXPage.broadcast(UIXPage.java:126)
at

javax.faces.component.UIViewRoot._broadcastForPhase(UIViewRoot.java:97)
at

javax.faces.component.UIViewRoot.processApplication(UIViewRoot.java:171)
at

org.apache.myfaces.lifecycle.InvokeApplicationExecutor.execute(InvokeApplicat
ionExecutor.java:32)

at
org.apache.myfaces.lifecycle.LifecycleImpl.executePhase(LifecycleImpl.java:95
)

at
org.apache.myfaces.lifecycle.LifecycleImpl.execute(LifecycleImpl.java:70)

at javax.faces.webapp.FacesServlet.service(FacesServlet.java:139)
at

weblogic.servlet.internal.StubSecurityHelper$ServletServiceAction.run(StubSec
urityHelper.java:227)

at
weblogic.servlet.internal.StubSecurityHelper.invokeServlet(StubSecurityHelper
.java:125)

at
weblogic.servlet.internal.ServletStubImpl.execute(ServletStubImpl.java:292)

at weblogic.servlet.internal.TailFilter.doFilter(TailFilter.java:26)
at

weblogic.servlet.internal.FilterChainImpl.doFilter(FilterChainImpl.java:42)
at

org.apache.myfaces.webapp.filter.ExtensionsFilter.doFilter(ExtensionsFilter.j
ava:144)

at
weblogic.servlet.internal.FilterChainImpl.doFilter(FilterChainImpl.java:42)

at
oracle.adfinternal.view.faces.webapp.AdfFacesFilterImpl._invokeDoFilter(AdfFa
cesFilterImpl.java:367)

at
oracle.adfinternal.view.faces.webapp.AdfFacesFilterImpl._doFilterImpl(AdfFace
sFilterImpl.java:336)

at
oracle.adfinternal.view.faces.webapp.AdfFacesFilterImpl.doFilter(AdfFacesFilt
erImpl.java:244)

at
oracle.adf.view.faces.webapp.AdfFacesFilter.doFilter(AdfFacesFilter.java:87)

at
weblogic.servlet.internal.FilterChainImpl.doFilter(FilterChainImpl.java:42)

at
us.oh.state.epa.stars2.framework.userAuth.PortalFilter.doFilter(PortalFilter.
java:95)

at
weblogic.servlet.internal.FilterChainImpl.doFilter(FilterChainImpl.java:42)

at
weblogic.servlet.internal.WebAppServletContext$ServletInvocationAction.run(We
bAppServletContext.java:3496)

at
weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject
.java:321)

at weblogic.security.service.SecurityManager.runAs(Unknown Source)
at

weblogic.servlet.internal.WebAppServletContext.securedExecute(WebAppServletCo
ntext.java:2180)

at
weblogic.servlet.internal.WebAppServletContext.execute(WebAppServletContext.j
ava:2086)

at
weblogic.servlet.internal.ServletRequestImpl.run(ServletRequestImpl.java:1406
)

at weblogic.work.ExecuteThread.execute(ExecuteThread.java:201)
at weblogic.work.ExecuteThread.run(ExecuteThread.java:173)

This error identifies a problem in an SQL statement run by the system. The exception is thrown by the
SQLStateMapping class, but someone diagnosing the problem would be more interested in looking at
us.oh.state.epa.stars2.database.dao.infrastructure.InfrastructureSQLDAO.creat
eTask (InfrastructureSQLDAO.java:1918) since this will provide more insight into the SQL
statement that was run. In general, the first line in the stack that identifies stars2 code is usually the
best place to start looking for the problem, although you may need to trace further up the stack to find
the root cause.

SQL
SQL is useful for diagnosing some problems; particularly on the external system where there is usually
no direct access to the data via the Stars2 user interface (although a WebEx session can be used to
access the user’s screen in some cases. More on this later…).

Often, when an eBiz user encounters a problem, the first thing to find out is what in-progress tasks are
active for that user. This is done by executing the following query:

SELECT * from stars2_staging.cm_task WHERE facility_id = ‘xxxxxxxxxx’;

This query will list all the in-progress tasks for the specified facility (with ‘xxxxxxxxxx’ replaced by the
facility id of the affected facility). Among the most important fields to look at in this table are the

task_type field which identifies the type of the task (compliance report, facility profile, etc), the
create_date field which identifies when the task was created and the user_name field which identifies
the user who created the task. If more information is needed about the object related to the task
(application, emission report, compliance report, etc.) the internal_id field contains the integer id that
identifies the application or report referred to by that record.

SQL can be used on either the internal or external database to get information about the data that may
not be readily available via the user interface. Read-only access to the production databases is available
to developers to diagnose problems. Problems can often be corrected using SQL, but any SQL that
modifies the database must be submitted to ITS in order to be run on the production system. Whenever
possible, any SQL that alters data should be tested on the testapps database prior to being sent to ITS to
run in production. Any data changed by such SQL statements may be lost forever—so be careful. Data
in the testapps database is often very similar to production database and production problems can
usually be reproduced in testapps fairly accurately. This allows developers to test fixes in an
environment as close to production as possible.

WebEx
On occasions where it is necessary to see the problem that an eBiz user is experiencing, it may be
possible to establish a WebEx session with the user. WebEx enables DAPC personnel to view the
external user’s desktop on a DAPC machine and see the problem occur in real time. Because of limited
resources, this is usually only used when absolutely necessary to understand the problem the user is
experiencing.

Recurring Problems
There are certain types of errors that occur repetitively, but sporadically for which no fix has been found
or that are not serious enough to fix (given the priority of other work being done in the system). These
problems will be described here so they can be recognized and dealt with accordingly. Many of these
recurring problems are not caused by Stars2 code.

Stuck Threads
Stuck Threads have occurred several times in the system, but there does not seem to be a consistent
pattern as to when they occur or what the cause is. These generally seem to occur during a database
operation even though the same operation had not caused a problem previously and usually does not
cause a problem again.

These problems are usually resolved by restarting the server or, preferably, closing the database
connection that is causing the problem.

“500” Errors
These errors are usually reported by eBiz users who are seeing a “500” error reported by their web
browser. In most cases the problem has something to do with the user’s environment. For example,
people accessing the system with version 6 of Internet Explorer seem to have this problem more often

than people using other browsers. IE 6 is not supported and users are encouraged to use IE 7 or Mozilla
Firefox. Sometimes, these errors are reported by users using an approved browser. In most cases, the
problem tends to resolve itself after a while. It is possible that closing the browser and reopening it or
rebooting the user’s PC resolves the problem. We don’t have much information on what really fixes the
problem since most users don’t call again once the problem is fixed.

Database Streaming Not Working
eBiz users have access to a read-only copy of the internal stars2 database via the Stars2 UI. This
database is kept in synch with the internal database via a process called “streaming”. The streaming
process fails occasionally, causing the data the external user sees to be out of synch with the internal
system. This is usually recognized when the user submits data and does not see the changes they
submitted.

Streaming problems are usually resolved by restarting the streaming process. This process can take up
to 1 ½ hours to complete, so it is usually done during non-peak hours unless there is an urgent need to
synch the data.

Developers need to be aware that changes to the schema will require the stream to be rebuilt. So if a
schema change is put in production, ITS needs to be informed of the change being made and time needs
to be allocated to allow the database stream to be rebuilt.

Successful Gateway Submission, Task Still In-Progress
Due to reasons not yet fully understood, there are times when an eBiz user has a successful submission,
but the item submitted remains in the in-progress tasks table. Normally applications, emissions reports,
compliance reports, etc. are removed from the in-progress tasks table as soon as they are successfully
submitted, but in some cases, this remove operation does not occur.

In these cases, developers simply ensure that the data has indeed been submitted successfully and the
Stars2 support team will contact the end user and inform them that they can delete the in-progress task
manually without losing any data. The user should access their submitted object from the read-only
database via the 3rd level menu to verify for themselves that they have submitted successfully before
deleting the task from staging.

Internal User Login Problem
Occasionally, internal DAPC users are not able to log in to the system and the error log for the time of
the attempted login has an entry similar to the following line:

2010-04-22 15:49:40,300 ERROR [[ACTIVE] ExecuteThread: '0' for queue:
'weblogic.kernel.Default (self-tuning)']
us.oh.state.epa.stars2.framework.userAuth.AuthenticationFilter
(AuthenticationFilter.java:150) - Caught Java error:
java.util.ConcurrentModificationException in
java.util.HashMap$HashIterator.nextEntry(), line 921

This is a known problem in the system that is being investigated by ITS development.

	384963.pdf
	384963.docx

